Polixir Revive¶
Tutorial
Task Examples
Advanced Tools
- Add External Factor
- Add Expert Functions
- Multi-Time-Steps Data Nodes
- Append Time Step Index as Node Input
- Freeze network parameters of some nodes
- Heterogeneous Decision Flow Loading
- Introduction to Empty Nodes
- Loss function of user-defined node
- Generate Decision Flow through Causal Inference
- Customize Network Decision Nodes
- Introducing expert rule constraints
- Training Control Policies with Multiple Nodes
- Introduction to Multi-Discriminator
- Neural Network Disturber
Training Results
Revive API
- revive.server
- revive.computation
VirtualEnv
VirtualEnv.to()
VirtualEnv.check_version()
VirtualEnv.reset()
VirtualEnv.set_env()
VirtualEnv.target_policy_name
VirtualEnv.set_target_policy_name()
VirtualEnv.replace_policy()
VirtualEnv.infer_k_steps()
VirtualEnv.infer_one_step()
VirtualEnv.reset_ensemble_matcher()
VirtualEnv.node_pre_computation()
VirtualEnv.node_post_computation()
VirtualEnv.node_infer()
VirtualEnv.node_dist()
VirtualEnv.export2onnx()
PolicyModel
- revive.conf
- base_config
- global_seed
- val_split_ratio
- val_split_mode
- ignore_check
- data_workers
- use_time_step_embed
- time_step_embed_size
- use_traj_id_embed
- pre_horzion
- venv_rollout_horizon
- venv_gpus_per_worker
- venv_train_dataset_mode
- venv_metric
- venv_algo
- rollout_plt_frequency
- venv_save_frequency
- plt_response_curve
- rollout_dataset_mode
- venv_val_freq
- policy_gpus_per_worker
- behavioral_policy_init
- policy_algo
- test_horizon
- workers_per_trial
- train_venv_trials
- train_policy_trials
- venv_algo_config
- policy_algo_config
- base_config