Source code for revive.computation.dists

''''''
"""
    POLIXIR REVIVE, copyright (C) 2021-2024 Polixir Technologies Co., Ltd., is 
    distributed under the GNU Lesser General Public License (GNU LGPL). 
    POLIXIR REVIVE is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 3 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
"""

import numpy as np
from typing import Tuple

import torch
from torch.functional import F
from torch.distributions import constraints
from torch.distributions import Normal, Categorical, OneHotCategorical

import pyro
from pyro.distributions.torch_distribution import TorchDistributionMixin
from pyro.distributions.kl import register_kl, kl_divergence

from itertools import groupby

[docs] def all_equal(iterable): ''' Define a function to check if all elements in an iterable are equal''' g = groupby(iterable) return next(g, True) and not next(g, False)
[docs] def exportable_broadcast(tensor1 : torch.Tensor, tensor2 : torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: ''' Broadcast tensors to the same shape using onnx exportable operators ''' if len(tensor1.shape) < len(tensor2.shape): tensor2, tensor1 = exportable_broadcast(tensor2, tensor1) else: shape1 = tensor1.shape shape2 = tensor2.shape if len(shape1) == len(shape2): final_shape = [max(s1, s2) for s1, s2 in zip(shape1, shape2)] tensor1 = tensor1.expand(*final_shape) tensor2 = tensor2.expand(*final_shape) else: tensor2 = tensor2.expand(*shape1) return tensor1, tensor2
[docs] class ReviveDistributionMixin: '''Define revive distribution API''' @property def mode(self,): '''return the most likely sample of the distributions''' raise NotImplementedError @property def std(self): '''return the standard deviation of the distributions''' raise NotImplementedError
[docs] def sample_with_logprob(self, sample_shape=torch.Size()): sample = self.rsample(sample_shape) if self.has_rsample else self.sample(sample_shape) return sample, self.log_prob(sample)
[docs] class ReviveDistribution(pyro.distributions.TorchDistribution, ReviveDistributionMixin): pass
[docs] class ExportableNormal(Normal): def __init__(self, loc, scale, validate_args): """ Use exportable_broadcast() aligns the shape of the tensor """ self.loc, self.scale = exportable_broadcast(loc, scale) batch_shape = self.loc.size() super(Normal, self).__init__(batch_shape, validate_args=validate_args)
[docs] class ExportableCategorical(Categorical):
[docs] def log_prob(self, value): """ Use exportable_broadcast() aligns the shape of the tensor """ if self._validate_args: self._validate_sample(value) value = value.long().unsqueeze(-1) value, log_pmf = exportable_broadcast(value, self.logits) value = value[..., :1] return log_pmf.gather(-1, value).squeeze(-1)
[docs] class DiagnalNormal(ReviveDistribution): def __init__(self, loc, scale, validate_args=False): self.base_dist = ExportableNormal(loc, scale, validate_args) batch_shape = torch.Size(loc.shape[:-1]) event_shape = torch.Size([loc.shape[-1]]) super(DiagnalNormal, self).__init__(batch_shape, event_shape, validate_args)
[docs] def sample(self, sample_shape=torch.Size()): return self.base_dist.sample(sample_shape)
[docs] def rsample(self, sample_shape=torch.Size()): return self.base_dist.rsample(sample_shape)
[docs] def log_prob(self, sample): log_prob = self.base_dist.log_prob(sample) return torch.sum(log_prob, dim=-1)
[docs] def entropy(self): entropy = self.base_dist.entropy() return torch.sum(entropy, dim=-1)
[docs] def shift(self, mu_shift): '''shift the distribution, useful in local mode transition''' return DiagnalNormal(self.base_dist.loc + mu_shift, self.base_dist.scale)
@property def mode(self): return self.base_dist.mean @property def std(self): return self.base_dist.scale
[docs] class TransformedDistribution(torch.distributions.TransformedDistribution): @property def mode(self): x = self.base_dist.mode for transform in self.transforms: x = transform(x) return x @property def std(self): raise NotImplementedError # TODO: fix this!
[docs] def entropy(self, num=torch.Size([100])): # use samples to estimate entropy samples = self.rsample(num) log_prob = self.log_prob(samples) entropy = - torch.mean(log_prob, dim=0) return entropy
[docs] class DiscreteLogistic(ReviveDistribution): r""" Model discrete variable with Logistic distribution, inspired from: https://github.com/openai/vdvae/blob/main/vae_helpers.py As far as I know, the trick was proposed in: Salimans, Tim, Andrej Karpathy, Xi Chen, and Diederik P. Kingma "Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications." arXiv preprint arXiv:1701.05517 (2017). :param loc: Location parameter, assert it have been normalized to [-1, 1] :param scale: Scale parameter. :param num: Number of possible value for each dimension. """ arg_constraints = {"loc": constraints.real, "scale": constraints.positive} support = constraints.real has_rsample = True def __init__(self, loc, scale, num, *, validate_args=False): self.loc, self.scale = exportable_broadcast(loc, scale) self.num = torch.tensor(num).to(loc) batch_shape = torch.Size(loc.shape[:-1]) event_shape = torch.Size([loc.shape[-1]]) super(DiscreteLogistic, self).__init__(batch_shape, event_shape, validate_args)
[docs] def log_prob(self, value): mid = value - self.loc plus = (mid + 1 / (self.num - 1)) / self.scale minus = (mid - 1 / (self.num - 1)) / self.scale prob = torch.sigmoid(plus) - torch.sigmoid(minus) log_prob_left_edge = plus - F.softplus(plus) log_prob_right_edge = - F.softplus(minus) z = mid / self.scale log_prob_extreme = z - torch.log(self.scale) - 2 * F.softplus(z) return torch.where(value < - 0.999, log_prob_left_edge, torch.where(value > 0.999, log_prob_right_edge, torch.where(prob > 1e-5, torch.log(prob + 1e-5), log_prob_extreme))).sum(dim=-1)
[docs] @torch.no_grad() def sample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) u = self.loc.new_empty(shape).uniform_() value = self.icdf(u) round_value = self.round(value) return torch.clamp(round_value, -1, 1)
[docs] def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) u = self.loc.new_empty(shape).uniform_() value = self.icdf(u) round_value = self.round(value) return torch.clamp(round_value, -1, 1) + value - value.detach()
[docs] def cdf(self, value): z = (value - self.loc) / self.scale return torch.sigmoid(z)
[docs] def icdf(self, value): return self.loc + self.scale * torch.logit(value, eps=1e-5)
[docs] def round(self, value): value = (value + 1) / 2 * (self.num - 1) return torch.round(value) / (self.num - 1) * 2 - 1
@property def mode(self): return torch.clamp(self.round(self.loc), -1, 1) + self.loc - self.loc.detach() @property def std(self): return self.scale * np.pi / 3 ** 0.5
[docs] def entropy(self): return torch.sum(torch.log(self.scale) + 2, dim=-1)
[docs] class Onehot(OneHotCategorical, TorchDistributionMixin, ReviveDistributionMixin): """Differentiable Onehot Distribution""" has_rsample = True _validate_args = False def __init__(self, logits=None, validate_args=False): self._categorical = ExportableCategorical(logits=logits, validate_args=False) batch_shape = self._categorical.batch_shape event_shape = self._categorical.param_shape[-1:] super(OneHotCategorical, self).__init__(batch_shape, event_shape, validate_args=validate_args)
[docs] def rsample(self, sample_shape=torch.Size()): # Implement straight-through estimator # Bengio et.al. Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation sample = self.sample(sample_shape) return sample + self.probs - self.probs.detach()
@property def mode(self): index = torch.argmax(self.logits, dim=-1) num_classes = self.event_shape[0] if torch.is_tensor(num_classes): num_classes = num_classes.item() sample = F.one_hot(index, num_classes) return sample + self.probs - self.probs.detach() @property def std(self): return self.variance
[docs] class GaussianMixture(pyro.distributions.MixtureOfDiagNormals, ReviveDistributionMixin): def __init__(self, locs, coord_scale, component_logits): self.batch_mode = (locs.dim() > 2) assert(coord_scale.shape == locs.shape) assert(self.batch_mode or locs.dim() == 2), \ "The locs parameter in MixtureOfDiagNormals should be K x D dimensional (or B x K x D if doing batches)" if not self.batch_mode: assert(coord_scale.dim() == 2), \ "The coord_scale parameter in MixtureOfDiagNormals should be K x D dimensional" assert(component_logits.dim() == 1), \ "The component_logits parameter in MixtureOfDiagNormals should be K dimensional" assert(component_logits.size(-1) == locs.size(-2)) batch_shape = () else: assert(coord_scale.dim() > 2), \ "The coord_scale parameter in MixtureOfDiagNormals should be B x K x D dimensional" assert(component_logits.dim() > 1), \ "The component_logits parameter in MixtureOfDiagNormals should be B x K dimensional" assert(component_logits.size(-1) == locs.size(-2)) batch_shape = tuple(locs.shape[:-2]) self.locs = locs self.coord_scale = coord_scale self.component_logits = component_logits self.dim = locs.size(-1) self.categorical = ExportableCategorical(logits=component_logits) self.probs = self.categorical.probs ReviveDistribution.__init__(self, batch_shape=torch.Size(batch_shape), event_shape=torch.Size((self.dim,))) @property def mode(self): # NOTE: this is only an approximate mode which = self.categorical.logits.max(dim=-1)[1] which = which.unsqueeze(dim=-1).unsqueeze(dim=-1) which_expand = which.expand(tuple(which.shape[:-1] + (self.locs.shape[-1],))) loc = torch.gather(self.locs, -2, which_expand).squeeze(-2) return loc @property def std(self): p = self.categorical.probs return torch.sum(self.coord_scale * p.unsqueeze(-1), dim=-2)
[docs] def shift(self, mu_shift): '''shift the distribution, useful in local mode transition''' return GaussianMixture(self.locs + mu_shift.unsqueeze(dim=-2), self.coord_scale, self.component_logits)
[docs] def entropy(self): p = self.categorical.probs normal = DiagnalNormal(self.locs, self.coord_scale) entropy = normal.entropy() return torch.sum(p * entropy, dim=-1)
[docs] class MixDistribution(ReviveDistribution): """Collection of multiple distributions""" arg_constraints = {} def __init__(self, dists): super().__init__() assert all_equal([dist.batch_shape for dist in dists]), "the batch shape of all distributions should be equal" assert all_equal([len(dist.event_shape) == 1 for dist in dists]), "the event shape of all distributions should have length 1" self.dists = dists self.sizes = [dist.event_shape[0] for dist in self.dists] batch_shape = self.dists[0].batch_shape event_shape = torch.Size((sum(self.sizes),)) super(MixDistribution, self).__init__(batch_shape, event_shape)
[docs] def sample(self, num=torch.Size()): samples = [dist.sample(num) for dist in self.dists] return torch.cat(samples, dim=-1)
[docs] def rsample(self, num=torch.Size()): samples = [dist.rsample(num) for dist in self.dists] return torch.cat(samples, dim=-1)
[docs] def entropy(self): return sum([dist.entropy() for dist in self.dists])
[docs] def log_prob(self, x): if type(x) == list: return [self.dists[i].log_prob(x[i]) for i in range(len(x))] # manually split the tensor x = torch.split(x, self.sizes, dim=-1) return sum([self.dists[i].log_prob(x[i]) for i in range(len(x))])
@property def mode(self): modes = [dist.mode for dist in self.dists] return torch.cat(modes, dim=-1) @property def std(self): stds = [dist.std for dist in self.dists] return torch.cat(stds, dim=-1) @property def dists_type(self): return [type(dist) for dist in self.dists]
[docs] def shift(self, mu_shift): '''shift the distribution, useful in local mode transition''' assert all([type(dist) in [DiagnalNormal, GaussianMixture] for dist in self.dists]), \ "all the distributions should have method `shift`" return MixDistribution([dist.shift(mu_shift) for dist in self.dists])
@register_kl(DiagnalNormal, DiagnalNormal) def _kl_diagnalnormal_diagnalnormal(p : DiagnalNormal, q : DiagnalNormal): kl = kl_divergence(p.base_dist, q.base_dist) kl = torch.sum(kl, dim=-1) return kl @register_kl(Onehot, Onehot) def _kl_onehot_onehot(p : Onehot, q : Onehot): p_probs = p.probs.clamp_min(1e-30) q_probs = q.probs.clamp_min(1e-30) kl = (p_probs * (torch.log(p_probs) - torch.log(q_probs))).sum(dim=-1) return kl @register_kl(GaussianMixture, GaussianMixture) def _kl_gmm_gmm(p : GaussianMixture, q : GaussianMixture): samples = p.rsample() log_p = p.log_prob(samples) log_q = q.log_prob(samples) return log_p - log_q @register_kl(MixDistribution, MixDistribution) def _kl_mix_mix(p : MixDistribution, q : MixDistribution): assert all([type(_p) == type(_q) for _p, _q in zip(p.dists, q.dists)]) kl = 0 for _p, _q in zip(p.dists, q.dists): kl = kl + kl_divergence(_p, _q) return kl @register_kl(DiscreteLogistic, DiscreteLogistic) def _kl_discrete_logistic_discrete_logistic(p : DiscreteLogistic, q : DiscreteLogistic): assert torch.all(p.num == q.num) # NOTE: Cannot compute the kl divergence in the analysitical form, use 100 samples to estimate. samples = p.sample((100,)) p_log_prob = p.log_prob(samples) q_log_prob = q.log_prob(samples) return torch.mean(p_log_prob - q_log_prob, dim=0) if __name__ == '__main__': print('-' * 50) onehot = Onehot(torch.rand(2, 10, requires_grad=True)) print('onehot batch shape', onehot.batch_shape) print('onehot event shape', onehot.event_shape) print('onehot sample', onehot.sample()) print('onehot rsample', onehot.rsample()) print('onehot log prob', onehot.sample_with_logprob()[1]) print('onehot mode', onehot.mode) print('onehot std', onehot.std) print('onehot entropy', onehot.entropy()) _onehot = Onehot(torch.rand(2, 10, requires_grad=True)) print('onehot kl', kl_divergence(onehot, _onehot)) print('-' * 50) mixture = GaussianMixture( torch.rand(2, 6, 4, requires_grad=True), torch.rand(2, 6, 4, requires_grad=True), torch.rand(2, 6, requires_grad=True), ) print('gmm batch shape', mixture.batch_shape) print('gmm event shape', mixture.event_shape) print('gmm sample', mixture.sample()) print('gmm rsample', mixture.rsample()) print('gmm log prob', mixture.sample_with_logprob()[1]) print('gmm mode', mixture.mode) print('gmm std', mixture.std) print('gmm entropy', mixture.entropy()) _mixture = GaussianMixture( torch.rand(2, 6, 4, requires_grad=True), torch.rand(2, 6, 4, requires_grad=True), torch.rand(2, 6, requires_grad=True), ) print('gmm kl', kl_divergence(mixture, _mixture)) print('-' * 50) normal = DiagnalNormal( torch.rand(2, 5, requires_grad=True), torch.rand(2, 5, requires_grad=True) ) print('normal batch shape', normal.batch_shape) print('normal event shape', normal.event_shape) print('normal sample', normal.sample()) print('normal rsample', normal.rsample()) print('normal log prob', normal.sample_with_logprob()[1]) print('normal mode', normal.mode) print('normal std', normal.std) print('normal entropy', normal.entropy()) _normal = DiagnalNormal( torch.rand(2, 5, requires_grad=True), torch.rand(2, 5, requires_grad=True) ) print('normal kl', kl_divergence(normal, _normal)) print('-' * 50) discrete_logic = DiscreteLogistic( torch.rand(2, 5, requires_grad=True) * 2 - 1, torch.rand(2, 5, requires_grad=True), [5, 9, 17, 33, 65], ) print('discrete logistic batch shape', discrete_logic.batch_shape) print('discrete logistic event shape', discrete_logic.event_shape) print('discrete logistic sample', discrete_logic.sample()) print('discrete logistic rsample', discrete_logic.rsample()) print('discrete logistic log prob', discrete_logic.sample_with_logprob()[1]) print('discrete logistic mode', discrete_logic.mode) print('discrete logistic std', discrete_logic.std) print('discrete logistic entropy', discrete_logic.entropy()) _discrete_logic = DiscreteLogistic( torch.rand(2, 5, requires_grad=True) * 2 - 1, torch.rand(2, 5, requires_grad=True), [5, 9, 17, 33, 65], ) print('discrete logistic kl', kl_divergence(discrete_logic, _discrete_logic)) print('-' * 50) mix = MixDistribution([onehot, mixture, normal, discrete_logic]) print('mix batch shape', mix.batch_shape) print('mix event shape', mix.event_shape) print('mix sample', mix.sample()) print('mix rsample', mix.rsample()) print('mix log prob', mix.sample_with_logprob()[1]) print('mix mode', mix.mode) print('mix std', mix.std) print('mix entropy', mix.entropy()) _mix = MixDistribution([_onehot, _mixture, _normal, _discrete_logic]) print('mix kl', kl_divergence(mix, _mix))