Source code for revive.algo.venv.revive

''''''
"""
    POLIXIR REVIVE, copyright (C) 2021-2023 Polixir Technologies Co., Ltd., is 
    distributed under the GNU Lesser General Public License (GNU LGPL). 
    POLIXIR REVIVE is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 3 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
"""

from copy import deepcopy
import torch
import numpy as np
from loguru import logger
import matplotlib.pyplot as plt
from collections import deque
from torch import nn
from torch.functional import F
from ray import train

from revive.utils.raysgd_utils import BATCH_SIZE, NUM_SAMPLES, AverageMeterCollection
from revive.computation.graph import *
from revive.computation.modules import *
from revive.utils.common_utils import *
from revive.data.dataset import data_creator
from revive.algo.venv.base import VenvOperator, catch_error


[docs]class ReviveOperator(VenvOperator): NAME = "REVIVE"
[docs] def matcher_model_creator(self, config, graph): """ Create matcher models. :param config: configuration parameters :return: all the models. """ networks = [] self.matching_nodes = graph.get_relation_node_names() if config['matching_nodes'] == 'auto' else config['matching_nodes'] if isinstance(self.matching_nodes[0], str): self.matching_nodes_list = [self.matching_nodes, ] else: self.matching_nodes_list = self.matching_nodes logger.info(f"matching_nodes_list : {self.matching_nodes_list}") self.matching_fit_nodes_list = self.matching_nodes_list if ("matching_fit_nodes" not in config.keys() or config['matching_fit_nodes'] == 'auto') else config['matching_fit_nodes'] logger.info(f"matching_fit_nodes_list : {self.matching_fit_nodes_list}") self.matching_nodes_fit_index_list = [] self.matcher_num = len(self.matching_nodes_list) for matching_nodes,matching_fit_nodes in zip(self.matching_nodes_list, self.matching_fit_nodes_list): input_dim = 0 # del nodata node for node in graph.nodata_node_names: if node in matching_nodes: logger.info(f"{matching_nodes}, {node}") matching_nodes.remove(node) matching_nodes_fit_index = {} for node_name in matching_nodes: oral_node_name = node_name if node_name.startswith("next_"): node_name = node_name[5:] assert node_name in self._graph.fit.keys(), f"Node name {oral_node_name} not in {self._graph.fit.keys()}" input_dim += np.sum(self._graph.fit[node_name]) matching_nodes_fit_index[oral_node_name] = self._graph.fit[node_name] self.matching_nodes_fit_index_list.append(matching_nodes_fit_index) logger.info(f"Matcher nodes: {matching_nodes}, Input dim : {input_dim}") if config['matcher_type'] in ['mlp', 'res', 'transformer', 'ft_transformer']: matcher_network = FeedForwardMatcher(input_dim, config['matcher_hidden_features'], config['matcher_hidden_layers'], norm=config['matcher_normalization'], hidden_activation=config['matcher_activation'], backbone_type=config['matcher_type']) matcher_network.matching_nodes = matching_nodes # input to matcher matcher_network.matching_fit_nodes = matching_fit_nodes networks.append(matcher_network) elif config['matcher_type'] in ['gru', 'lstm']: matcher_network = RecurrentMatcher(input_dim, config['matcher_hidden_features'], config['matcher_hidden_layers'], backbone_type=config['matcher_type'], bidirect=config['birnn']) matcher_network.matching_nodes = matching_nodes matcher_network.matching_fit_nodes = matching_fit_nodes networks.append(matcher_network) elif config['matcher_type'] == 'hierarchical': raise DeprecationWarning('This may not correctly work due to registration of functions and leaf nodes') dims = [] dims.append(total_dims['obs']['input']) for policy_name in list(graph.keys())[:-1]: dims.append(total_dims[policy_name]['input']) dims.append(total_dims['obs']['input']) networks.append(HierarchicalMatcher(dims, config['matcher_hidden_features'], config['matcher_hidden_layers'], norm=config['matcher_normalization'], hidden_activation=config['matcher_activation'])) return networks
[docs] def model_creator(self, config, graph): matcher_networks = self.matcher_model_creator(config, graph) generator_networks = self.generator_model_creator(config, graph) return generator_networks + matcher_networks
[docs] def data_creator(self, config : dict): config[BATCH_SIZE] = config['bc_batch_size'] if config['policy_backbone'] in ['lstm', 'gru', 'contextual_lstm', 'contextual_gru'] or config['transition_backbone'] in ['lstm', 'gru']: return data_creator(config, training_is_sample=False, val_horizon=config['venv_rollout_horizon'], double=True) else: return data_creator(config, training_mode='transition', training_is_sample=False, val_horizon=config['venv_rollout_horizon'], double=True)
[docs] def switch_data_loader(self): self.config[BATCH_SIZE] = self.config['revive_batch_size'] train_loader_train, val_loader_train, train_loader_val, val_loader_val = \ data_creator(self.config, training_horizon=self.config['venv_rollout_horizon'], val_horizon=self.config['venv_rollout_horizon'], double=True) try: self._train_loader_train = train.torch.prepare_data_loader(train_loader_train, move_to_device=False) self._val_loader_train = train.torch.prepare_data_loader(val_loader_train, move_to_device=False) self._train_loader_val = train.torch.prepare_data_loader(train_loader_val, move_to_device=False) self._val_loader_val = train.torch.prepare_data_loader(val_loader_val, move_to_device=False) except: self._train_loader_train = train_loader_train self._val_loader_train = val_loader_train self._train_loader_val = train_loader_val self._val_loader_val = val_loader_val
@catch_error def __init__(self, config): super().__init__(config) self._v_loss_list = [] self.adapt_stds = [None] * len(self._graph) # self.state_nodes = self._graph.get_relation_node_names() if config['state_nodes'] == 'auto' else config['state_nodes'] self.state_nodes = self._graph.get_leaf() if config['state_nodes'] == 'auto' else config['state_nodes'] self.history_matcher_train = deque(maxlen=config["history_matcher_num"]) self.history_matcher_val = deque(maxlen=config["history_matcher_num"]) self.matcher_loss_length = config["matcher_loss_length"] if self.matcher_loss_length: self.matcher_loss_low = config["matcher_loss_low"] self.matcher_loss_high = config["matcher_loss_high"] self.history_matcher_loss_train = deque(maxlen=self.matcher_loss_length) self.history_matcher_loss_val = deque(maxlen=self.matcher_loss_length) self.stop_matcher_update = False self.stop_generator_update_train = False self.stop_generator_update_val = False logger.info(f'Using {self.matching_nodes} as matching nodes!') logger.info(f'Using {self.state_nodes} as state nodes!') def _early_stop(self, info): # early stop if last 50 v_loss all greater than 1e4 if 'REVIVE/v_loss_train' in info.keys(): self._v_loss_list.append(max(info['REVIVE/v_loss_train'], info['REVIVE/v_loss_val'])) _last_v_losses = np.array(self._v_loss_list[-50:]) if np.all(_last_v_losses > 1e4): logger.info('Early stop triggered by value explosion!') self._stop_flag = self._stop_flag or True return super()._early_stop(info)
[docs] def bc_train_batch(self, expert_data, batch_info, scope='train', loss_type="nll"): self._batch_cnt += 1 if scope == 'train': models = self.train_models graph = self.graph_train optimizer = self.train_optimizers[0] else: models = self.val_models graph = self.graph_val optimizer = self.val_optimizers[0] graph.reset() expert_data.to_torch(device=self._device) info = {} loss = 0 _generated_data = Batch() rnn_flag = True if (self.config['policy_backbone'] in ['gru', 'lstm']) or (self.config['transition_backbone'] in ['gru', 'lstm']) else False if rnn_flag: sample_fn = lambda dist: dist.rsample() generated_data = generate_rollout_bc(expert_data, graph, expert_data.shape[0], sample_fn, self.adapt_stds, clip=1.5) for node_name in graph.keys(): node = graph.get_node(node_name) if node.node_type == 'network': isnan_index_list = [] isnan_index = 1. # check whether nan is in inputs for node_name_ in node.input_names: if (node_name_ + "_isnan_index_") in expert_data.keys(): isnan_index_list.append(expert_data[node_name_ + "_isnan_index_"]) # check whether nan is in outputs if (node_name + "_isnan_index_") in expert_data.keys(): isnan_index_list.append(expert_data[node_name + "_isnan_index_"]) if isnan_index_list: isnan_index, _ = torch.max(torch.cat(isnan_index_list, axis=-1), axis=-1, keepdim=True) isnan_index = 1 - isnan_index if not rnn_flag: action_dist = graph.compute_node(node_name, expert_data) # use rollout data as expert data for nodata nodes if node_name in self._graph.nodata_node_names: expert_data[node_name] = action_dist.mode continue _loss_type = graph.nodes_loss_type.get(node_name, loss_type) if _loss_type == "mae": if rnn_flag: policy_loss = ((generated_data[node_name] - expert_data[node_name])*isnan_index).abs().sum(dim=-1).mean() else: policy_loss = ((action_dist.mode - expert_data[node_name])*isnan_index).abs().sum(dim=-1).mean() elif _loss_type == "mse": if rnn_flag: policy_loss = (((generated_data[node_name] - expert_data[node_name])*isnan_index)**2).sum(dim=-1).mean() else: policy_loss = (((action_dist.mode - expert_data[node_name])*isnan_index)**2).sum(dim=-1).mean() elif _loss_type == "nll": if rnn_flag: _generated_data_log_prob = [] for i in range(expert_data.shape[0]): _generated_data_log_prob.append(generated_data[node_name + '_dist' + f"_{i}"][i].log_prob(expert_data[node_name][i, ...]).unsqueeze(0)) _generated_data_log_prob = torch.vstack(_generated_data_log_prob).to(expert_data[node_name]) if isnan_index_list: isnan_index = (torch.mean(isnan_index, dim=-1) > 0).type_as(isnan_index) policy_loss = - (_generated_data_log_prob*isnan_index).mean() else: _generated_data[node_name + '_log_prob'] = action_dist.log_prob(expert_data[node_name]) _generated_data[node_name] = action_dist.sample() if isnan_index_list: isnan_index = (torch.mean(isnan_index, dim=-1) > 0).type_as(isnan_index) policy_loss = - (_generated_data[node_name + '_log_prob']*isnan_index).mean() elif _loss_type.startswith("user_module."): loss_name = _loss_type[len("user_module."):] loss_function = self.config["user_module"].get(loss_name, None) assert loss_function is not None kwargs = { "node_dist" : action_dist, "node_name" : node_name, "isnan_index_list" : isnan_index_list, "isnan_index" : isnan_index, "graph" : graph, "expert_data" : expert_data, } policy_loss = loss_function(kwargs) else: raise NotImplementedError loss += policy_loss info[f"{self.NAME}/{node_name}_loss_{scope}"] = policy_loss.item() info[f"{self.NAME}/total_loss_{scope}"] = loss.item() optimizer.zero_grad(set_to_none=True) loss.backward() grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(get_models_parameters(*models), 50) if torch.any(torch.isnan(grad_norm)): self.nan_in_grad() logger.info(f'Detect nan in gradient, skip this batch! (loss : {loss}, grad_norm : {grad_norm})') else: optimizer.step() info[f"{self.NAME}/grad_norm"] = grad_norm.item() return info
@catch_error def train_epoch(self): info = {} # switch to evaluate mode if hasattr(self, "model"): self.model.train() if hasattr(self, "models"): for _model in self.models: _model.train() if self._epoch_cnt == self.config['bc_epoch']: self.switch_data_loader() self._load_best_models() self._epoch_cnt += 1 if self._epoch_cnt <= self.config['bc_epoch']: # perform bc metric_meters_train = AverageMeterCollection() for batch_idx, batch in enumerate(iter(self._train_loader_train)): batch_info = { "batch_idx": batch_idx, "global_step": self.global_step } batch_info.update(info) metrics = self.bc_train_batch(batch, batch_info=batch_info, scope='train') metric_meters_train.update(metrics, n=metrics.pop(NUM_SAMPLES, 1)) self.global_step += 1 metric_meters_val = AverageMeterCollection() for batch_idx, batch in enumerate(iter(self._val_loader_train)): batch_info = { "batch_idx": batch_idx, "global_step": self.global_step } batch_info.update(info) metrics = self.bc_train_batch(batch, batch_info=batch_info, scope='val') metric_meters_val.update(metrics, n=metrics.pop(NUM_SAMPLES, 1)) self.global_step += 1 info = metric_meters_train.summary() info.update(metric_meters_val.summary()) return {k : info[k] for k in filter(lambda k: not k.startswith('last'), info.keys())} else: if hasattr(self, "model"): self.model.train() if hasattr(self, "models"): for _model in self.models: _model.train() # training on training set graph = self.graph_train generator_other_nets = self.other_models_train[:-self.matcher_num] # value net(s) matchers = self.other_models_train[-self.matcher_num:] generator_optimizers = self.train_optimizers[1] other_generator_optimizers = self.train_optimizers[2] # value net optim(s) matcher_optimizer = self.train_optimizers[-1] self.scope = "train" # [ TRAINING D ] avoid matcher loss shocking for _ in range(10): for i in range(self.config['d_steps']): self.global_step += 1 expert_data = next(iter(self._train_loader_train)) expert_data.to_torch(device=self._device) _, _info = self._run_matcher(expert_data, graph, matchers, matcher_optimizer, test=not self.config["matcher_sample"]) _info = {k + '_train' : v for k, v in _info.items()} info.update(_info) d_loss = info[f'{self.NAME}/matcher_loss_train'] if d_loss <= 1.35: break if self._epoch_cnt % self.config["history_matcher_save_epochs"] == 0: logger.info(f"Epoch: {self._epoch_cnt}, Save train matcher in 'history_matcher_train'.") self.history_matcher_train.append(deepcopy(matchers)) if self._epoch_cnt > self.config['bc_epoch'] + self.config['matcher_pretrain_epoch']: for i in range(self.config['g_steps']): self.global_step += 1 expert_data = next(iter(self._train_loader_train)) expert_data.to_torch(device=self._device) for matcher_index in range(len(matchers)): _info, generated_data = self._run_generator(deepcopy(expert_data), graph, generator_other_nets[matcher_index], matchers[matcher_index], generator_optimizers, other_generator_optimizers, matcher_index=matcher_index) _info = {k + '_train' : v for k, v in _info.items()} info.update(_info) if self.config["fintune"] >= 1 and self._epoch_cnt%self.config['finetune_fre']==0: rnn_flag = True if (self.config['policy_backbone'] in ['gru', 'lstm']) or (self.config['transition_backbone'] in ['gru', 'lstm']) else False # print(f'BC is activated at epoch: {self._epoch_cnt}') if not rnn_flag: for _ in range(int(self.config["fintune"])): expert_data = Batch({k:v.reshape(-1, v.shape[-1]) for k,v in expert_data.items()}) batch_nums = len(expert_data) // max(min(len(expert_data) // 256,1),128) for batch_data in expert_data.split(batch_nums): self.bc_train_batch(batch_data, {}, "train") else: for _ in range(int(self.config["fintune"])): batch_nums = max(expert_data.shape[1] // max(min(expert_data.shape[1] // 256, 1), 128), 1) _expert_data = dict() for k,v in expert_data.items(): _expert_data[k] = torch.chunk(v, batch_nums, dim=1) # [tensor_1, tensor_2, ..., tensor_128] iter_num = len(_expert_data[k]) for idx in range(iter_num): self.bc_train_batch(Batch({k:v[idx] for k,v in _expert_data.items()}), {}, "train") # training on valiadation set graph = self.graph_val generator_other_nets = self.other_models_val[:-self.matcher_num] matchers = self.other_models_val[-self.matcher_num:] generator_optimizers = self.val_optimizers[1] other_generator_optimizers = self.val_optimizers[2] matcher_optimizer = self.val_optimizers[-1] self.scope = "val" # [ TRAINING D ] avoid matcher loss shocking for _ in range(10): for i in range(self.config['d_steps']): self.global_step += 1 expert_data = next(iter(self._val_loader_train)) expert_data.to_torch(device=self._device) _, _info = self._run_matcher(expert_data, graph, matchers, matcher_optimizer, test=not self.config["matcher_sample"]) _info = {k + '_val' : v for k, v in _info.items()} info.update(_info) d_loss = info[f'{self.NAME}/matcher_loss_val'] if d_loss <= 1.35: break if self._epoch_cnt % self.config["history_matcher_save_epochs"] == 0: logger.info(f"Epoch: {self._epoch_cnt}, Save val matcher in 'history_matcher_train'.") self.history_matcher_val.append(deepcopy(matchers)) if self._epoch_cnt > self.config['bc_epoch'] + self.config['matcher_pretrain_epoch']: for i in range(self.config['g_steps']): self.global_step += 1 expert_data = next(iter(self._val_loader_train)) expert_data.to_torch(device=self._device) for matcher_index in range(len(matchers)): _info, generated_data = self._run_generator(deepcopy(expert_data), graph, generator_other_nets[matcher_index], matchers[matcher_index], generator_optimizers, other_generator_optimizers, matcher_index=matcher_index) _info = {k + '_val' : v for k, v in _info.items()} info.update(_info) if self.config["fintune"] >= 1 and self._epoch_cnt%self.config['finetune_fre']==0: rnn_flag = True if (self.config['policy_backbone'] in ['gru', 'lstm']) or (self.config['transition_backbone'] in ['gru', 'lstm']) else False if not rnn_flag: for _ in range(int(self.config["fintune"])): expert_data = Batch({k:v.reshape(-1, v.shape[-1]) for k,v in expert_data.items()}) batch_nums = len(expert_data) // max(min(len(expert_data) // 256,1),128) for batch_data in expert_data.split(batch_nums): self.bc_train_batch(batch_data, {}, "val") else: for _ in range(int(self.config["fintune"])): batch_nums = max(expert_data.shape[1] // max(min(expert_data.shape[1] // 256, 1), 128), 1) _expert_data = dict() for k,v in expert_data.items(): _expert_data[k] = torch.chunk(v, batch_nums, dim=1) # [tensor_1, tensor_2, ..., tensor_128] iter_num = len(_expert_data[k]) for idx in range(iter_num): self.bc_train_batch(Batch({k:v[idx] for k,v in _expert_data.items()}), {}, "val") # NOTE: Currently, adaptation do not support gmm distributions if self.config['std_adapt_strategy'] is not None: with torch.no_grad(): for i, node_name in enumerate(self._graph.keys()): error = expert_data[node_name] - generated_data[node_name] if self.config['std_adapt_strategy'] == 'mean': std = error.abs().view(-1, error.shape[-1]).mean(0) elif self.config['std_adapt_strategy'] == 'max': std, _ = error.abs().view(-1, error.shape[-1]).max(0) std /= 3 self.adapt_stds[i] = std info = self._early_stop(info) if self._epoch_cnt >= self.config['revive_epoch'] + self.config['bc_epoch']: self._stop_flag = True info["stop_flag"] = self._stop_flag del expert_data, generated_data return {k : info[k] for k in filter(lambda k: not k.startswith('last'), info.keys())} def _get_matcher_score(self, batch_data, _matcher, score_mode="mean"): """ Args: matcher: always a single matcher here Returns: score (torch.Tensor): """ matching_nodes = _matcher.matching_nodes matching_nodes_index = self.matching_nodes_list.index(matching_nodes) matching_nodes_fit_index = self.matching_nodes_fit_index_list[matching_nodes_index] matcher_input = get_list_traj(batch_data, matching_nodes, matching_nodes_fit_index) score = _matcher(*matcher_input) """ history_matcher = self.history_matcher_train if self.scope == "train" else self.history_matcher_val for matcher in history_matcher: scores.append(matcher(*matcher_input)) if use_by_generator: history_matcher = self.history_matcher_train if self.scope == "train" else self.history_matcher_val for matcher in history_matcher: scores.append(matcher(*matcher_input)) """ """ score = torch.mean(torch.cat(scores[:1], axis=-1), dim=-1, keepdim=True) if score_mode in "mean": score_total = torch.mean(torch.cat(scores, axis=-1), dim=-1, keepdim=True) elif score_mode in "min": score_total,_ = torch.min(torch.cat(scores, axis=-1), dim=-1, keepdim=True) elif score_mode in "trj_min": # T B N score_total_cat = torch.cat(scores, axis=-1) score_total_trj_sum_min_index = torch.min(torch.sum(score_total_cat, dim=0, keepdim=True),dim=-1, keepdim=True) index = torch.arange(0,score_total_cat.shape[-2], device=score_total_cat.device) * score_total_cat.shape[-1] + score_total_trj_sum_min_index[1].reshape(-1) score_total = score_total_cat.reshape(score_total_cat.shape[0],-1) score_total = score_total[:,index] score_total = score_total.reshape(score_total_cat.shape[0],score_total_cat.shape[1],1) else: raise NotImplementedError """ return score def _generate_rewards(self, generated_data, expert_data, graph, matcher): def reward_fn(data, matcher, graph): # generate reward with matcher score = self._get_matcher_score(data, matcher) matcher_reward = - torch.log(1 - score + 1e-4) matcher_reward = (matcher_reward - matcher_reward.mean()) / (matcher_reward.std() + 1e-4) # normalize reward # generate reward with mae shooting_mae = [] for node_name in graph.keys(): if node_name in graph.metric_nodes: policy_shooting_error = torch.abs(expert_data[node_name] - generated_data[node_name]) shooting_mae.append(policy_shooting_error) shooting_mae = torch.mean(torch.cat(shooting_mae, axis=-1),dim=-1,keepdim=True) mae_reward = - shooting_mae mae_reward = (mae_reward - mae_reward.mean()) / (mae_reward.std() + 1e-4) # normalize reward reward = matcher_reward*(1-self.config["mae_reward_weight"]) + mae_reward*self.config["mae_reward_weight"] if self.config['rule_reward_func']: if (not self.config['rule_reward_matching_nodes']) or (set(matcher.matching_nodes) == set(self.config['rule_reward_matching_nodes'])): rule_reward = self.config['rule_reward_func'](generated_data, graph) assert rule_reward.shape == matcher_reward.shape if self.config['rule_reward_func_normalize']: rule_reward = (rule_reward - rule_reward.mean()) / (rule_reward.std() + 1e-4) reward += (rule_reward * self.config['rule_reward_func_weight']) return reward.detach() return generate_rewards(generated_data, reward_fn=lambda data: reward_fn(data, matcher, graph)) def _generate_rollout(self, expert_data, graph, matcher, test=False, generate_reward=False, sample_fn=None, clip=False): # generate rollout if sample_fn is None: sample_fn = lambda dist: dist.mode if test else (dist.rsample() if self.config['generator_algo'] == 'svg' else dist.sample()) generated_data = generate_rollout(expert_data, graph, expert_data.shape[0], sample_fn, self.adapt_stds, clip) if generate_reward: generated_data = self._generate_rewards(generated_data, expert_data, graph, matcher) return generated_data def _run_matcher(self, expert_data, graph, matchers, matcher_optimizer=None, test=False): # generate rollout # [ TRAINING D ] the same setting as policy learning: data should be the same as policy learn generated_data = self._generate_rollout(expert_data, graph, matchers, test=test, clip=1.5) isnan_index_list = [] for matching_nodes in self.matching_nodes_list: for node_name in matching_nodes: if node_name + "_isnan_index_" in expert_data.keys(): isnan_index_list.append(expert_data[node_name + "_isnan_index_"]) if isnan_index_list: isnan_index = torch.mean(torch.cat(isnan_index_list,axis=-1),axis=-1) expert_data = expert_data[isnan_index==0] generated_data = generated_data[isnan_index==0] # compute matcher score expert_scores, generated_scores, matcher_losses = [], [], [] matcher_dict = dict() for matcher_index in range(len(matchers)): expert_score = self._get_matcher_score(expert_data, matchers[matcher_index]) generated_score = self._get_matcher_score(generated_data, matchers[matcher_index]) expert_scores.append(deepcopy(expert_score.detach())) generated_scores.append(deepcopy(generated_score.detach())) real = torch.ones_like(expert_score) fake = torch.zeros_like(generated_score) expert_entropy = torch.distributions.Bernoulli(expert_score).entropy().mean() generated_entropy = torch.distributions.Bernoulli(generated_score).entropy().mean() entropy_loss = - 0.5 * (expert_entropy + generated_entropy) matcher_losses.append(F.binary_cross_entropy(expert_score, real) + F.binary_cross_entropy(generated_score, fake)) matcher_dict.update({ f"{self.NAME}/expert_score_{matcher_index}": expert_score.mean().item(), f"{self.NAME}/generated_score_{matcher_index}": generated_score.mean().item(), # f"{self.NAME}/expert_score_total": expert_score_total.mean().item(), # f"{self.NAME}/generated_score_total": generated_score_total.mean().item(), f"{self.NAME}/expert_acc_{matcher_index}": (expert_score > 0.5).float().mean().item(), f"{self.NAME}/generated_acc_{matcher_index}": (generated_score < 0.5).float().mean().item(), f"{self.NAME}/expert_entropy_{matcher_index}": expert_entropy.item(), f"{self.NAME}/generated_entropy_{matcher_index}": generated_entropy.item(), f"{self.NAME}/matcher_loss_{matcher_index}": matcher_losses[-1].item(), # f"{self.NAME}/matcher_loss_total": matcher_loss_total.item(), }) expert_score = sum(expert_scores) / len(expert_scores) generated_score = sum(generated_scores) / len(generated_scores) matcher_loss = sum(matcher_losses) / len(matcher_losses) if self.matcher_loss_length: if self.scope == "train": self.history_matcher_loss_train.append(matcher_loss.item()) if np.mean(list(self.history_matcher_loss_train)) < self.matcher_loss_low: self.stop_matcher_update = True else: self.stop_matcher_update = False if np.mean(list(self.history_matcher_loss_train)) > self.matcher_loss_high: self.stop_generator_update_train = True else: self.stop_generator_update_train = False else: self.history_matcher_loss_val.append(matcher_loss.item()) if np.mean(list(self.history_matcher_loss_val)) < self.matcher_loss_low: self.stop_matcher_update = True else: self.stop_matcher_update = False if np.mean(list(self.history_matcher_loss_val)) > self.matcher_loss_high: self.stop_generator_update_val = True else: self.stop_generator_update_val = False if matcher_optimizer is not None and not self.stop_matcher_update: matcher_optimizer.zero_grad(set_to_none=True) matcher_loss.backward() matcher_grad_norm = nn.utils.clip_grad_norm_(get_models_parameters(*matchers), 0.5) if torch.any(torch.isnan(matcher_grad_norm)): self.nan_in_grad() logger.info(f'Detect nan in gradient, skip this batch! (loss : {matcher_loss}, grad_norm : {matcher_grad_norm})') else: matcher_optimizer.step() # with torch.no_grad(): # matcher_loss_total = F.binary_cross_entropy(expert_score_total, real) + F.binary_cross_entropy(generated_score_total, fake) info = { f"{self.NAME}/expert_score": expert_score.mean().item(), f"{self.NAME}/generated_score": generated_score.mean().item(), # f"{self.NAME}/expert_score_total": expert_score_total.mean().item(), # f"{self.NAME}/generated_score_total": generated_score_total.mean().item(), f"{self.NAME}/expert_acc": (expert_score > 0.5).float().mean().item(), f"{self.NAME}/generated_acc": (generated_score < 0.5).float().mean().item(), f"{self.NAME}/expert_entropy": expert_entropy.item(), f"{self.NAME}/generated_entropy": generated_entropy.item(), f"{self.NAME}/matcher_loss": matcher_loss.item(), # f"{self.NAME}/matcher_loss_total": matcher_loss_total.item(), } if matcher_optimizer is not None and not self.stop_matcher_update: info[f"{self.NAME}/matcher_grad_norm"] = matcher_grad_norm.item() info.update(matcher_dict) return generated_data, info