''''''
"""
POLIXIR REVIVE, copyright (C) 2021-2023 Polixir Technologies Co., Ltd., is
distributed under the GNU Lesser General Public License (GNU LGPL).
POLIXIR REVIVE is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
"""
import torch
import numpy as np
from numbers import Number
from torch.functional import F
from typing import Callable, Tuple
from revive.data.batch import Batch
from revive.computation.dists import ReviveDistribution
[docs]def soft_clamp(x : torch.Tensor, _min=None, _max=None) -> torch.Tensor:
# clamp tensor values while mataining the gradient
if _max is not None:
x = _max - F.softplus(_max - x)
if _min is not None:
x = _min + F.softplus(x - _min)
return x
[docs]def maintain_gradient_hard_clamp(x : torch.Tensor, _min=None, _max=None) -> torch.Tensor:
# clamp tensor values with hard constrain while mataining the gradient
output = torch.clamp(x, _min, _max)
left_mask = torch.zeros(x.shape, dtype=bool) if _min is None else x < _min
right_mask = torch.zeros(x.shape, dtype=bool) if _max is None else x > _max
mask = torch.logical_or(left_mask, right_mask).to(output)
output = output + mask * (x - x.detach())
return output
[docs]def safe_atanh(x):
return torch.atanh(maintain_gradient_hard_clamp(x, -0.999, 0.999))
[docs]def get_sample_function(deterministic : bool) -> Callable[[ReviveDistribution], torch.Tensor]:
if deterministic:
sample_fn = lambda dist: dist.mode
else:
sample_fn = lambda dist: dist.rsample()
return sample_fn
[docs]def to_numpy(x : Tuple[np.ndarray, torch.Tensor]) -> np.ndarray:
"""Return an object without torch.Tensor."""
if isinstance(x, torch.Tensor):
x = x.detach().cpu().numpy()
return x
[docs]def to_torch(x : Tuple[np.ndarray, torch.Tensor], dtype=torch.float32, device : str = "cpu") -> torch.Tensor:
"""Return an object without torch.Tensor."""
if isinstance(x, torch.Tensor):
if dtype is not None:
x = x.type(dtype)
x = x.to(device)
elif isinstance(x, (np.number, np.bool_, Number)):
x = to_torch(np.asanyarray(x), dtype, device)
else: # fallback
x = np.asanyarray(x)
if issubclass(x.dtype.type, (np.bool_, np.number)):
x = torch.from_numpy(x).to(device)
if dtype is not None:
x = x.type(dtype)
else:
raise TypeError(f"object {x} cannot be converted to torch.")
return x